You are given two 0-indexed integer arrays nums1
and nums2
of equal length n
and a positive integer k
. You must choose a subsequence of indices from nums1
of length k
.
For chosen indices i0
, i1
, …, ik - 1
, your score is defined as:
-The sum of the selected elements from nums1
multiplied with the minimum of the selected elements from nums2
.
- It can defined simply as:
(nums1[i0] + nums1[i1] +...+ nums1[ik - 1]) * min(nums2[i0] , nums2[i1], ... ,nums2[ik - 1])
. Return the maximum possible score.
A subsequence of indices of an array is a set that can be derived from the set {0, 1, ..., n-1}
by deleting some or no elements.
Example
Input: nums1 = [1,3,3,2], nums2 = [2,1,3,4], k = 3
Output: 12
Explanation:
The four possible subsequence scores are:
- We choose the indices 0, 1, and 2 with score = (1+3+3) * min(2,1,3) = 7.
- We choose the indices 0, 1, and 3 with score = (1+3+2) * min(2,1,4) = 6.
- We choose the indices 0, 2, and 3 with score = (1+3+2) * min(2,3,4) = 12.
- We choose the indices 1, 2, and 3 with score = (3+3+2) * min(1,3,4) = 8.
Therefore, we return the max score, which is 12.
Solution
Great solution found here
/**
* @param {number[]} nums1
* @param {number[]} nums2
* @param {number} k
* @return {number}
*/
var maxScore = function (nums1, nums2, k) {
//Declare result, totalSum, and a heap
let result = 0;
let totalSum = 0;
let heap = new MinPriorityQueue({ priority: (element) => element });
//Merge the two arrays
const merged = nums1.map((nums1Val, i) => [nums2[i], nums1Val]);
//Sort the merged array
merged.sort((a, b) => b[0] - a[0]);
//For each element in the merged array
for (const [maxOf2, num1Val] of merged) {
//If the heap size is equal to k
if (heap.size() === k) {
//Remove the first element from the heap
totalSum -= heap.dequeue().element;
}
//Add the num1Val to the totalSum
totalSum += num1Val;
//Add the num1Val to the heap
heap.enqueue(num1Val);
//Update the result
if (heap.size() === k) {
//Update the result
result = Math.max(result, totalSum * maxOf2);
}
}
return result;
};